Article 10415

Title of the article

MEASUREMENT OF TEMPERATURE CONDUCTIVITY OF THIN METAL LAYERS BY LASER FLASH METHOD

Authors

Nishchev Konstantin Nikolaevich, Candidate of physical and mathematical sciences, associate professor, director of the Institute of Physics and Chemistry, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), nishchev@inbox.ru
Novopol'tsev Mikhail Il'ich, Candidate of physical and mathematical sciences, associate professor, sub-department of general physics, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), nishchev@inbox.ru
Beglov Vladimir Ivanovich, Candidate of physical and mathematical sciences, associate professor, sub-department of radio engineering, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), begvi1@mail.ru
Okin Maksim Aleksandrovich, Candidate of engineering sciences, associate professor, sub-department of radio engineering, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), okinma@mail.ru
Lyutova Ekaterina Nikolaevna, Principal engineer, sub-department of general physics, Ogarev Mordovia State University (68 Bolshevistskaya street, Saransk, Russia), ekat.lyutova@yandex.ru

Index UDK

536.2.083

Abstract

Background. One of the key targets of power electronics is to provide an efficient heat removal in power semiconductor devices (PSD). The heat removal efficiency in PSD is significantly dependent on thermal conductivity of thin metal layers that are part of inter-cell connections of a device. Concerning this, it is of great
significance to find methods of accurate measuring of temperature conductivity in these layers. The aim of the study is to develop a method of measuring temperature conductivity of thin metal layers in PSD production technologies, based on the laser flash method with the use of regular equipment.
Materials and methods. The laser flash method (Parker method) was used to measure the temperature conductivity of copper and aluminum thin layers and, then, thin sintered layers of silver paste as well.
Results. The paper describes the procedure of measuring by the laser flash method; the procedure is based on radial heat flows formed in thin metal layers that extend from the periphery to the centre of the sample. Mathematical modeling of heat transfer processes is presented. Using the setup LFA 427 (NETZSCH) the authors have determined coefficients of temperature conductivity of thin metal layers.
Conclusions. The findings show that for accurate measurement of temperature conductivity in thin metal layers using a laser flash, unlike the standard Parker method, it is necessary to generate radial heat flows that extend to the centre of the sample in those layers. The reliability of the proposed methodology is proven by conformity of temperature conductivity results, obtained from measuring copper and aluminum samples, to look-up tables. The temperature conductivity of a thin sintered layer of silver paste, used in inter-cell connections of PSD, is calculated.

Key words

power semiconductor devices, thin metal layers, thermal conductivity, temperature conductivity, laser flash.

Download PDF
References

1. Guva A. Ya. Kontaktnyy teploobmen silovykh poluprovodnikovykh priborov [Contact heat exchange of power semiconductor devices]. Novosibirsk, 2005, 210 p.
2. Martynenko V. A., Chumakov G. D. Silovaya elektronika [Power electronics]. 2005, no. 3, pp. 8–10.
3. Patent US 3555669. Process for soldering silicon wafers to contacts. Tarn W. H. A Patented Jan. 19, 1971.
4. Patentschrift DE 3414065 C2, Deutsches Patentamt. Fellenger J., Baumgartner W. 1989.
5. Schwarzbauer H., Kuhnert R. IEEE Trans. Ind. Appl. 1991, vol. 27, no. 1, p. 93.
6. Novopol'tsev M. I., Savrasov K. V., Mishkin V. P., Eliseev V. V., Martynenko V. A., Grishanin A. V. Prikladnaya fizika [Applied physics]. 2015, no. 3, pp. 10–14.
7. Mertens C. Fortschrittberichte: VDI-Verlag [Perfomance report: VDI-publishing]. Duesseldorf, 2004, 141 p.
8. Kikoin I. K. Tablitsy fizicheskikh velichin. Spravochnik [Tables of physical values. Reference book]. Moscow: Atomizdat, 1976, p. 256.
9. Parker W. J., Jenkins R. J., Butler C. P., Abbott G. L. J. Appl. Phys. 1961, vol. 32, no. 9, pp. 1679–1684.
10. Hubert M. J. J. Appl. Phys. 1980, vol. 51 (9), pp. 4666–4672.
11. Baranov V. G., Godin Yu. G., Merinov I. G., Odintsov A. A., Tenishev A. V. Nauchnaya sessiya MIFI–2000: sb. nauch. tr. [Scientific session MIFI-2000: collected papers]. Moscow: MIFI, 2000, vol. 8, 220 p.
12. Larson K. B., Koyama K. J. Appl. Phys. 1967, vol. 38, no. 2, pp. 465–474.
13. Baranov V. G., Tenishev A. V., Lunev A. V., Pokrovskiy S. A., Khlunov A. V. Yadernaya fizika i inzhiniring [Nuclear physics and engineering]. 2011, vol. 2, no. 4, pp. 291–302.
14. Zinov'ev V. E. Teplofizicheskie svoystva metallov pri vysokikh temperaturakh. Spravochnik [Thermophysical properties of metals at high temperatures]. Moscow: Metallurgiya, 1989, 384 p.

 

Дата создания: 12.04.2016 09:31
Дата обновления: 12.04.2016 13:59